Back to Search Start Over

Emergency Load Shedding Strategy for Microgrids Based on Dueling Deep Q-Learning

Authors :
Can Wang
Hongliang Yu
Lin Chai
Huikang Liu
Binxin Zhu
Source :
IEEE Access, Vol 9, Pp 19707-19715 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

The rapid drop of frequency under the disturbance is a major threat to the safe and stable operation of a microgrid (MG) system. Emergency load shedding is the main measure to prevent continuous frequency drop and power outage. The existing load shedding strategies have poor adaptability to deal with the problem of MG load shedding under different disturbance situations, and it is difficult to ensure the safe and stable operation of an MG in different operating environments. To address this problem, this paper proposes a data-driven load shedding strategy. First, considering the importance of the load and the frequency recovery time of the system, a load shedding contribution indicator is designed that takes into account the load frequency adjustment effect and the load shedding priority. This contribution indicator is introduced as a load shedding criterion into the reward value function of dueling deep Q learning. Second, considering the suddenness and uncertainty of emergency load shedding, a MG emergency load shedding strategy (ELSS) based on dueling deep Q-learning is proposed. On this basis, the dueling deep Q learning algorithm is used to obtain the load shedding decision with the maximum cumulative reward. Finally, taking the MG load shedding cases in two different scenarios as examples, a simulation study is carried out on a modified IEEE-25 bus MG. The simulation results show that, compared with the model-driven implicit enumeration strategy (IES), the proposed ELSS has superiority in maintaining stable power supply for important loads and reducing load shedding decision-making time and frequency fluctuations.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.5706bfce906f432ab71466b5af0ad7d0
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2021.3055401