Back to Search Start Over

Perovskite Solar Cells toward Eco-Friendly Printing

Authors :
Xiaoming Chang
Yuanyuan Fan
Kui Zhao
Junjie Fang
Dongle Liu
Ming-Chun Tang
Dounya Barrit
Detlef-M. Smilgies
Ruipeng Li
Jing Lu
Jianbo Li
Tinghuan Yang
Aram Amassian
Zicheng Ding
Yonghua Chen
Shengzhong (Frank) Liu
Wei Huang
Source :
Research, Vol 2021 (2021)
Publication Year :
2021
Publisher :
American Association for the Advancement of Science (AAAS), 2021.

Abstract

Eco-friendly printing is important for mass manufacturing of thin-film photovoltaic (PV) devices to preserve human safety and the environment and to reduce energy consumption and capital expense. However, it is challenging for perovskite PVs due to the lack of eco-friendly solvents for ambient fast printing. In this study, we demonstrate for the first time an eco-friendly printing concept for high-performance perovskite solar cells. Both the perovskite and charge transport layers were fabricated from eco-friendly solvents via scalable fast blade coating under ambient conditions. The perovskite dynamic crystallization during blade coating investigated using in situ grazing incidence wide-angle X-ray scattering (GIWAXS) reveals a long sol-gel window prior to phase transformation and a strong interaction between the precursors and the eco-friendly solvents. The insights enable the achievement of high quality coatings for both the perovskite and charge transport layers by controlling film formation during scalable coating. The excellent optoelectronic properties of these coatings translate to a power conversion efficiency of 18.26% for eco-friendly printed solar cells, which is on par with the conventional devices fabricated via spin coating from toxic solvents under inert atmosphere. The eco-friendly printing paradigm presented in this work paves the way for future green and high-throughput fabrication on an industrial scale for perovskite PVs.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
26395274
Volume :
2021
Database :
Directory of Open Access Journals
Journal :
Research
Publication Type :
Academic Journal
Accession number :
edsdoj.5714ba365122417794602ad50f6170f0
Document Type :
article
Full Text :
https://doi.org/10.34133/2021/9671892