Back to Search Start Over

Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network

Authors :
Di Wang
Zhao-Song Li
Yi Zheng
You-Ran Zhao
Chao Liu
Jin-Bo Xu
Yi-Wei Zheng
Qian Huang
Chen-Liang Chang
Da-Wei Zhang
Song-Lin Zhuang
Qiong-Hua Wang
Source :
Light: Science & Applications, Vol 13, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract With the development of artificial intelligence, neural network provides unique opportunities for holography, such as high fidelity and dynamic calculation. How to obtain real 3D scene and generate high fidelity hologram in real time is an urgent problem. Here, we propose a liquid lens based holographic camera for real 3D scene hologram acquisition using an end-to-end physical model-driven network (EEPMD-Net). As the core component of the liquid camera, the first 10 mm large aperture electrowetting-based liquid lens is proposed by using specially fabricated solution. The design of the liquid camera ensures that the multi-layers of the real 3D scene can be obtained quickly and with great imaging performance. The EEPMD-Net takes the information of real 3D scene as the input, and uses two new structures of encoder and decoder networks to realize low-noise phase generation. By comparing the intensity information between the reconstructed image after depth fusion and the target scene, the composite loss function is constructed for phase optimization, and the high-fidelity training of hologram with true depth of the 3D scene is realized for the first time. The holographic camera achieves the high-fidelity and fast generation of the hologram of the real 3D scene, and the reconstructed experiment proves that the holographic image has the advantage of low noise. The proposed holographic camera is unique and can be used in 3D display, measurement, encryption and other fields.

Details

Language :
English
ISSN :
20477538
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Light: Science & Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.571acd3a0f7142bbb716fd12270e578c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41377-024-01410-8