Back to Search Start Over

Large-scale phosphoproteomics reveals activation of the MAPK/GADD45β/P38 axis and cell cycle inhibition in response to BMP9 and BMP10 stimulation in endothelial cells

Authors :
Mohammad Al Tarrass
Lucid Belmudes
Dzenis Koça
Valentin Azemard
Hequn Liu
Tala Al Tabosh
Delphine Ciais
Agnès Desroches-Castan
Christophe Battail
Yohann Couté
Claire Bouvard
Sabine Bailly
Source :
Cell Communication and Signaling, Vol 22, Iss 1, Pp 1-21 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background BMP9 and BMP10 are two major regulators of vascular homeostasis. These two ligands bind with high affinity to the endothelial type I kinase receptor ALK1, together with a type II receptor, leading to the direct phosphorylation of the SMAD transcription factors. Apart from this canonical pathway, little is known. Interestingly, mutations in this signaling pathway have been identified in two rare cardiovascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. Methods To get an overview of the signaling pathways modulated by BMP9 and BMP10 stimulation in endothelial cells, we employed an unbiased phosphoproteomic-based strategy. Identified phosphosites were validated by western blot analysis and regulated targets by RT-qPCR. Cell cycle analysis was analyzed by flow cytometry. Results Large-scale phosphoproteomics revealed that BMP9 and BMP10 treatment induced a very similar phosphoproteomic profile. These BMPs activated a non-canonical transcriptional SMAD-dependent MAPK pathway (MEKK4/P38). We were able to validate this signaling pathway and demonstrated that this activation required the expression of the protein GADD45β. In turn, activated P38 phosphorylated the heat shock protein HSP27 and the endocytosis protein Eps15 (EGF receptor pathway substrate), and regulated the expression of specific genes (E-selectin, hyaluronan synthase 2 and cyclooxygenase 2). This study also highlighted the modulation in phosphorylation of proteins involved in transcriptional regulation (phosphorylation of the endothelial transcription factor ERG) and cell cycle inhibition (CDK4/6 pathway). Accordingly, we found that BMP10 induced a G1 cell cycle arrest and inhibited the mRNA expression of E2F2, cyclinD1 and cyclinA1. Conclusions Overall, our phosphoproteomic screen identified numerous proteins whose phosphorylation state is impacted by BMP9 and BMP10 treatment, paving the way for a better understanding of the molecular mechanisms regulated by BMP signaling in vascular diseases.

Details

Language :
English
ISSN :
1478811X
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cell Communication and Signaling
Publication Type :
Academic Journal
Accession number :
edsdoj.5764a562c7064ed688fbad16999dd25c
Document Type :
article
Full Text :
https://doi.org/10.1186/s12964-024-01486-0