Back to Search Start Over

Deep Personality Trait Recognition: A Survey

Authors :
Xiaoming Zhao
Zhiwei Tang
Shiqing Zhang
Source :
Frontiers in Psychology, Vol 13 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Automatic personality trait recognition has attracted increasing interest in psychology, neuropsychology, and computer science, etc. Motivated by the great success of deep learning methods in various tasks, a variety of deep neural networks have increasingly been employed to learn high-level feature representations for automatic personality trait recognition. This paper systematically presents a comprehensive survey on existing personality trait recognition methods from a computational perspective. Initially, we provide available personality trait data sets in the literature. Then, we review the principles and recent advances of typical deep learning techniques, including deep belief networks (DBNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs). Next, we describe the details of state-of-the-art personality trait recognition methods with specific focus on hand-crafted and deep learning-based feature extraction. These methods are analyzed and summarized in both single modality and multiple modalities, such as audio, visual, text, and physiological signals. Finally, we analyze the challenges and opportunities in this field and point out its future directions.

Details

Language :
English
ISSN :
16641078
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Psychology
Publication Type :
Academic Journal
Accession number :
edsdoj.576d206fce54d84aa0a96153114b529
Document Type :
article
Full Text :
https://doi.org/10.3389/fpsyg.2022.839619