Back to Search Start Over

Impact of new physics on the EW vacuum stability in a curved spacetime background

Authors :
E. Bentivegna
V. Branchina
F. Contino
D. ZappalĂ 
Source :
Journal of High Energy Physics, Vol 2017, Iss 12, Pp 1-26 (2017)
Publication Year :
2017
Publisher :
SpringerOpen, 2017.

Abstract

Abstract It has been recently shown that, contrary to an intuitive decoupling argument, the presence of new physics at very large energy scales (say around the Planck scale) can have a strong impact on the electroweak vacuum lifetime. In particular, the vacuum could be totally destabilized. This study was performed in a flat spacetime background, and it is important to extend the analysis to curved spacetime since these are Planckian-physics effects. It is generally expected that under these extreme conditions gravity should totally quench the formation of true vacuum bubbles, thus washing out the destabilizing effect of new physics. In this work we extend the analysis to curved spacetime and show that, although gravity pushes toward stabilization, the destabilizing effect of new physics is still (by far) the dominating one. In order to get model independent results, high energy new physics is parametrized in two different independent ways: as higher order operators in the Higgs field, or introducing new particles with very large masses. The destabilizing effect is observed in both cases, hinting at a general mechanism that does not depend on the parametrization details for new physics, thus maintaining the results obtained from the analysis performed in flat spacetime.

Details

Language :
English
ISSN :
10298479
Volume :
2017
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Journal of High Energy Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.5786a4d13ed24b94aef0631506c6c76c
Document Type :
article
Full Text :
https://doi.org/10.1007/JHEP12(2017)100