Back to Search Start Over

VDAC1, as a downstream molecule of MLKL, participates in OGD/R-induced necroptosis by inducing mitochondrial damage

Authors :
Hao Wan
Yan-di Yang
Qi Zhang
Yu-hua Chen
Xi-min Hu
Yan-xia Huang
Lei Shang
Kun Xiong
Source :
Heliyon, Vol 10, Iss 1, Pp e23426- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Ischemia-reperfusion (I/R) injury constitutes a significant risk factor for a range of diseases, including ischemic stroke, myocardial infarction, and trauma. Following the restoration of blood flow post-tissue ischemia, oxidative stress can lead to various forms of cell death, including necrosis, apoptosis, autophagy, and necroptosis. Recent evidence has highlighted the crucial role of mitochondrial dysfunction in I/R injury. Nevertheless, there remains much to be explored regarding the molecular signaling network governing cell death under conditions of oxidative stress. Voltage-dependent anion channel 1 (VDAC1), a major component in the outer mitochondrial membrane, is closely involved in the regulation of cell death. In a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R), which effectively simulates I/R injury in vitro, our study reveals that OGD/R induces VDAC1 oligomerization, consequently exacerbating cell death. Furthermore, we have revealed the translocation of mixed lineage kinase domain-like protein (MLKL) to the mitochondria, where it interacts with VDAC1 following OGD/R injury, leading to an increased mitochondrial membrane permeability. Notably, the inhibition of MLKL by necrosulfonamide hinders the binding of MLKL to VDAC1, primarily by affecting the membrane translocation of MLKL, and reduces OGD/R-induced VDAC1 oligomerization. Collectively, our findings provide preliminary evidence of the functional association between MLKL and VDAC1 in the regulation of necroptosis.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.579a1c195c5b4bc4ae03f7cf4287bdbd
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2023.e23426