Back to Search Start Over

Effect of Geometry and Fluid Viscosity on Dynamics of Fluid‐Filled Cracks: Insights From Analog Experimental Observations

Authors :
Haitao Cao
Ezequiel F. Medici
Gregory P. Waite
Roohollah Askari
Source :
Earth and Space Science, Vol 7, Iss 11, Pp n/a-n/a (2020)
Publication Year :
2020
Publisher :
American Geophysical Union (AGU), 2020.

Abstract

Abstract Fluid‐filled volumes in geological systems can change the local stress field in the host rock and may induce brittle deformation as well as crack propagation. Although the mechanisms relating fluid pressure perturbations and seismicity have been widely studied, the fluid‐solid interaction inside the crack of a host rock is still not well understood. An analog experimental model of fluid intrusion in cracks between planar layers has been developed to study stress conditions at the margins and tips. A combined high‐speed shadowgraph and a photoelasticity imaging system is used to visualize the fluid dynamics and induced stresses on the solid matrix. Cavitation, as well as bubble growth and collapse, occurs along the sawtooth crack margins, which produces a highly localized stress concentration to initiate new subcrack systems. The presence of the bubbles at the crack tip during fluid pressure perturbation can enhance crack propagation.

Details

Language :
English
ISSN :
23335084
Volume :
7
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Earth and Space Science
Publication Type :
Academic Journal
Accession number :
edsdoj.57b36bdf1f9419284fa710b8e57f36c
Document Type :
article
Full Text :
https://doi.org/10.1029/2020EA001333