Back to Search
Start Over
Effect of Geometry and Fluid Viscosity on Dynamics of Fluid‐Filled Cracks: Insights From Analog Experimental Observations
- Source :
- Earth and Space Science, Vol 7, Iss 11, Pp n/a-n/a (2020)
- Publication Year :
- 2020
- Publisher :
- American Geophysical Union (AGU), 2020.
-
Abstract
- Abstract Fluid‐filled volumes in geological systems can change the local stress field in the host rock and may induce brittle deformation as well as crack propagation. Although the mechanisms relating fluid pressure perturbations and seismicity have been widely studied, the fluid‐solid interaction inside the crack of a host rock is still not well understood. An analog experimental model of fluid intrusion in cracks between planar layers has been developed to study stress conditions at the margins and tips. A combined high‐speed shadowgraph and a photoelasticity imaging system is used to visualize the fluid dynamics and induced stresses on the solid matrix. Cavitation, as well as bubble growth and collapse, occurs along the sawtooth crack margins, which produces a highly localized stress concentration to initiate new subcrack systems. The presence of the bubbles at the crack tip during fluid pressure perturbation can enhance crack propagation.
- Subjects :
- crack
bubble nucleation
cavitation
crack dynamics
Astronomy
QB1-991
Geology
QE1-996.5
Subjects
Details
- Language :
- English
- ISSN :
- 23335084
- Volume :
- 7
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Earth and Space Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.57b36bdf1f9419284fa710b8e57f36c
- Document Type :
- article
- Full Text :
- https://doi.org/10.1029/2020EA001333