Back to Search Start Over

Application of Ultrasonic Guided Waves for Inspection of High Density Polyethylene Pipe Systems

Authors :
Premesh Shehan Lowe
Habiba Lais
Veena Paruchuri
Tat-Hean Gan
Source :
Sensors, Vol 20, Iss 11, p 3184 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The structural integrity assessment of thermoplastic pipes has become an interesting area of research due to its elevated usage in the liquid/gas transportation industry. Ultrasonic guided wave testing has gained higher attention from industry for the inspection of elongated structures due to the reduced inspection time and cost associated with conventional non-destructive testing techniques, e.g., ultrasonic testing, radiography, and visual inspection. Current research addresses the inspection of thermoplastic pipes using ultrasonic guided waves as a low cost and permanently installed structural health-monitoring tool. Laboratory and numerical investigations were conducted to study the potential of using ultrasonic guided waves to assess the structural health of thermoplastic pipe structures in order to define optimum frequency range for inspection, array design, and length of inspection. In order to achieve a better surface contact, flexible Macro-Fiber Composite transducers were used in this investigation, and the Teletest® Focus+ system was used as the pulser/receiver. Optimum frequency range of inspection was at 15−25 kHz due to the level of attenuation at higher frequencies and the larger dead zone at lower frequencies due to the pulse length. A minimum of 14 transducers around the circumference of a 3 inch pipe were required to suppress higher order flexural modes at 16 kHz. According to the studied condition, 1.84 m of inspection coverage could be achieved at a single direction for pulse-echo, which could be improved by using a higher number of transducers for excitation and using pitch-catch configuration.

Details

Language :
English
ISSN :
14248220
Volume :
20
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.57fab9f094264177a0217037b49179a2
Document Type :
article
Full Text :
https://doi.org/10.3390/s20113184