Back to Search Start Over

Tunable Phase Structure in Mn-Doped Lead-Free BaTiO3 Crystalline/Amorphous Energy Storage Thin Films

Authors :
Jianlu Geng
Dongxu Li
Hua Hao
Qinghu Guo
Huihuang Xu
Minghe Cao
Zhonghua Yao
Hanxing Liu
Source :
Crystals, Vol 13, Iss 4, p 649 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

For dielectric energy storage materials, high polarization and high breakdown strengths are a long-standing challenge. A modulating crystalline/amorphous phase structure strategy is proposed by Mn-doping and annealing temperature to enhance the energy storage performance of pure BaTiO3 (BT) films. In this study, lead-free Mn-doped BT films were prepared on Pt/Ti/SiO2/Si substrates via the sol-gel method, and the effects of the crystalline/amorphous phase ratio on polarization and electric properties were analyzed. A small amount of Mn-doping in BT could reduce the annealing temperature and enhance polarization with an Mn content of 8%. In addition, the energy storage properties of BT-8%Mn films achieve the best energy storage performance in terms of energy density and efficiency of 72.4 J/cm3 and 88.5% by changing the annealing temperature to 640 °C. BT-8%Mn energy storage films also possess good stability over a wide temperature range of 20 °C–200 °C, which demonstrates that crystalline/amorphous engineering is a simple and effective way to enhance energy storage applications of dielectric films.

Details

Language :
English
ISSN :
20734352
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Crystals
Publication Type :
Academic Journal
Accession number :
edsdoj.588a0d94a628472290b30667fb78357b
Document Type :
article
Full Text :
https://doi.org/10.3390/cryst13040649