Back to Search Start Over

Gut Microbiota-Derived l-Histidine/Imidazole Propionate Axis Fights against the Radiation-Induced Cardiopulmonary Injury

Authors :
Zhiyuan Chen
Bin Wang
Jiali Dong
Yuan Li
Shuqin Zhang
Xiaozhou Zeng
Huiwen Xiao
Saijun Fan
Ming Cui
Source :
International Journal of Molecular Sciences, Vol 22, Iss 21, p 11436 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Radiation-induced cardiopulmonary injuries are the most common and intractable side effects that are entwined with radiotherapy for thorax cancers. However, the therapeutic options for such complications have yielded disappointing results in clinical applications. Here, we reported that gut microbiota-derived l-Histidine and its secondary metabolite imidazole propionate (ImP) fought against radiation-induced cardiopulmonary injury in an entiric flora-dependent manner in mouse models. Local chest irradiation decreased the level of l-Histidine in fecal pellets, which was increased following fecal microbiota transplantation. l-Histidine replenishment via an oral route retarded the pathological process of lung and heart tissues and improved lung respiratory and heart systolic function following radiation exposure. l-Histidine preserved the gut bacterial taxonomic proportions shifted by total chest irradiation but failed to perform radioprotection in gut microbiota-deleted mice. ImP, the downstream metabolite of l-Histidine, accumulated in peripheral blood and lung tissues following l-Histidine replenishment and protected against radiation-induced lung and heart toxicity. Orally gavaged ImP could not enter into the circulatory system in mice through an antibiotic cocktail treatment. Importantly, ImP inhibited pyroptosis to nudge lung cell proliferation after radiation challenge. Together, our findings pave a novel method of protection against cardiopulmonary complications intertwined with radiotherapy in pre-clinical settings and underpin the idea that gut microbiota-produced l-Histidine and ImP are promising radioprotective agents.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
22
Issue :
21
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.58fe2839ffec4f54b546f6116e7a6233
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms222111436