Back to Search Start Over

A metagenomic analysis of the phase 2 Anopheles gambiae 1000 genomes dataset reveals a wide diversity of cobionts associated with field collected mosquitoes

Authors :
Andrzej Pastusiak
Michael R. Reddy
Xiaoji Chen
Isaiah Hoyer
Jack Dorman
Mary E. Gebhardt
Giovanna Carpi
Douglas E. Norris
James M. Pipas
Ethan K. Jackson
Source :
Communications Biology, Vol 7, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The Anopheles gambiae 1000 Genomes (Ag1000G) Consortium previously utilized deep sequencing methods to catalogue genetic diversity across African An. gambiae populations. We analyzed the complete datasets of 1142 individually sequenced mosquitoes through Microsoft Premonition’s Bayesian mixture model based (BMM) metagenomics pipeline. All specimens were confirmed as either An. gambiae sensu stricto (s.s.) or An. coluzzii with a high degree of confidence ( > 98% identity to reference). Homo sapiens DNA was identified in all specimens indicating contamination may have occurred either at the time of specimen collection, preparation and/or sequencing. We found evidence of vertebrate hosts in 162 specimens. 59 specimens contained validated Plasmodium falciparum reads. Human hepatitis B and primate erythroparvovirus-1 viral sequences were identified in fifteen and three mosquito specimens, respectively. 478 of the 1,142 specimens were found to contain bacterial reads and bacteriophage-related contigs were detected in 27 specimens. This analysis demonstrates the capacity of metagenomic approaches to elucidate important vector-host-pathogen interactions of epidemiological significance.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.5969504ef8fe4cfabc70da61814184a0
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-024-06337-9