Back to Search Start Over

Assessing Redundancy in Stormwater Structures Under Hydraulic Design

Authors :
Sina Hesarkazzazi
Mohsen Hajibabaei
Julian David Reyes-Silva
Peter Krebs
Robert Sitzenfrei
Source :
Water, Vol 12, Iss 4, p 1003 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

As environmental change is happening at an unprecedented pace, a reliable and proper urban drainage design is required to alleviate the negative effects of unexpected extreme rainfall events occurring due to the natural and anthropogenic variations such as climate change and urbanization. Since structure/configuration of a stormwater network plays an imperative role in the design and hydraulic behavior of the system, the goal of this paper is to elaborate upon the significance of possessing redundancy (e.g., alternative flow paths as in loops) under simultaneous hydraulic design in stormwater pipe networks. In this work, an innovative approach based on complex network properties is introduced to systematically and successively reduce the number of loops and, therefore, the level of redundancy, from a given grid-like (street) network. A methodology based on hydrodynamic modelling is utilized to find the optimal design costs for all created structures while satisfying a number of hydraulic design constraints. As a general implication, when structures are subject to extreme precipitation events, the overall capability of looped configurations for discharging runoff more efficiently is higher compared to more branched ones. The reason is due to prevailing (additional) storage volume in the system and existing more alternative water flow paths in looped structures, as opposed to the branched ones in which only unique pathways for discharging peak runoff exist. However, the question arises where to best introduce extra paths in the network? By systematically addressing this question with complex network analysis, the influence of downstream loops was identified to be more significant than that of upstream loops. Findings, additionally, indicated that possessing loop and introducing extra capacity without determining appropriate additional pipes positions in the system (flow direction) can even exacerbate the efficiency of water discharge. Considering a reasonable and cost-effective budget, it would, therefore, be worthwhile to install loop-tree-integrated stormwater collection systems with additional pipes at specific locations, especially downstream, to boost the hydraulic reliability and minimize the damage imposed by the surface flooding upon the metropolitan area.

Details

Language :
English
ISSN :
20734441
Volume :
12
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Water
Publication Type :
Academic Journal
Accession number :
edsdoj.5982f2a8ae4d82b5fa26de5a959e9c
Document Type :
article
Full Text :
https://doi.org/10.3390/w12041003