Back to Search Start Over

Asymmetric optical properties and bandgap shift of pre-strained flexible ZnO films

Authors :
Jiamin Liu
Zhikang Zhou
Honggang Gu
Jinlong Zhu
Hao Jiang
Shiyuan Liu
Source :
APL Materials, Vol 12, Iss 4, Pp 041126-041126-10 (2024)
Publication Year :
2024
Publisher :
AIP Publishing LLC, 2024.

Abstract

Strain engineering has been extensively explored to modulate the various intrinsic properties of flexible inorganic semiconductor films. However, experimental characterization of tensile and compressive strain-induced modulation of optoelectronic properties and their differences has not been easily implemented in flexible inorganic semiconductor films. Herein, the strain-dependent structural, optical, and optoelectronic properties of flexible ZnO films under pre-tensile and pre-compressive strains are systemically investigated by a Mueller matrix ellipsometry-based quantitative characterization method combined with x-ray diffraction and first-principle calculation. With extended prestress-driven deposition processing under bi-direction bending modes, pre-tensile and pre-compressive strains with symmetric magnitudes can be achieved in flexible ZnO films, which allows precise observation of the strain-driven asymmetric modulation of optoelectronic properties. When the applied prestrain varies approximately equally from 0% (baseline) to −0.99% (compression) and 1.07% (tensility), respectively, the relative changes for the c-axis lattice constant are 0.0133 and 0.0104 Å, respectively. Meanwhile, the dependence factors of the bandgap energy on the pre-compression and pre-tensile strains were determined as −0.0099 and −0.0156 eV/%, respectively, and the complex refractive index also presents an asymmetric varying trend. With the help of the strain–stress analysis and the first-principle calculation, the intriguing asymmetric strain-optical modulation effect could be attributed to the biaxial strain mechanism and the difference in the deformation potential between the two prestrain modes. These systematic investigation consequences are thus promising as a basis for the booming applications of the flexible inorganic semiconductor ensemble.

Details

Language :
English
ISSN :
2166532X
Volume :
12
Issue :
4
Database :
Directory of Open Access Journals
Journal :
APL Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.59c2e3f8b1d544789c80f502ac40c50f
Document Type :
article
Full Text :
https://doi.org/10.1063/5.0202381