Back to Search Start Over

Velocity coupling of grid cell modules enables stable embedding of a low dimensional variable in a high dimensional neural attractor

Authors :
Noga Mosheiff
Yoram Burak
Source :
eLife, Vol 8 (2019)
Publication Year :
2019
Publisher :
eLife Sciences Publications Ltd, 2019.

Abstract

Grid cells in the medial entorhinal cortex (MEC) encode position using a distributed representation across multiple neural populations (modules), each possessing a distinct spatial scale. The modular structure of the representation confers the grid cell neural code with large capacity. Yet, the modularity poses significant challenges for the neural circuitry that maintains the representation, and updates it based on self motion. Small incompatible drifts in different modules, driven by noise, can rapidly lead to large, abrupt shifts in the represented position, resulting in catastrophic readout errors. Here, we propose a theoretical model of coupled modules. The coupling suppresses incompatible drifts, allowing for a stable embedding of a two-dimensional variable (position) in a higher dimensional neural attractor, while preserving the large capacity. We propose that coupling of this type may be implemented by recurrent synaptic connectivity within the MEC with a relatively simple and biologically plausible structure.

Details

Language :
English
ISSN :
2050084X
Volume :
8
Database :
Directory of Open Access Journals
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
edsdoj.59c5fd401641478242b9afe3d77eef
Document Type :
article
Full Text :
https://doi.org/10.7554/eLife.48494