Back to Search Start Over

Axonal autophagic vesicle transport in the rat optic nerve in vivo under normal conditions and during acute axonal degeneration

Authors :
Xiaoyue Luo
Jiong Zhang
Johan Tolö
Sebastian Kügler
Uwe Michel
Mathias Bähr
Jan Christoph Koch
Source :
Acta Neuropathologica Communications, Vol 12, Iss 1, Pp 1-20 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma. Here, we established an in vivo live-imaging model in the rat optic nerve using viral vector mediated LC3-labeling and two-photon-microscopy to analyze axonal transport of AVs. Under basal conditions in vivo, 50% of the AVs are moving with a majority of 85% being transported in the retrograde direction. Transport velocity is higher in the retrograde than in the anterograde direction. A crush lesion of the optic nerve results in a rapid breakdown of retrograde axonal transport while the anterograde transport stays intact over several hours. Close to the lesion site, the formation of AVs is upregulated within the first 6 h after crush, but the clearance of AVs and the levels of lysosomal markers in the adjacent axon are reduced. Expression of p150Glued, an adaptor protein of dynein, is significantly reduced after crush lesion. In vitro, fusion and colocalization of the lysosomal marker cathepsin D with AVs are reduced after axotomy. Taken together, we present here the first in vivo analysis of axonal AV transport in the mammalian CNS using live-imaging. We find that axotomy leads to severe defects of retrograde motility and a decreased clearance of AVs via the lysosomal system.

Details

Language :
English
ISSN :
20515960
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Acta Neuropathologica Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.5a068e86bc84055a1b36ac964e27bef
Document Type :
article
Full Text :
https://doi.org/10.1186/s40478-024-01791-2