Back to Search Start Over

Screening of Ionic Liquids against Bamboo Mildew and Its Inhibition Mechanism

Authors :
Chunlin Liu
Shiqin Chen
Yingying Shan
Chungui Du
Jiawei Zhu
Qichao Bao
Yuran Shao
Wenxiu Yin
Fei Yang
Ying Ran
Yuting Wang
Source :
Molecules, Vol 28, Iss 8, p 3432 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Ionic liquids are a class of organic molten salts that consist entirely of cations and anions. They are characterized by their low vapor pressure, low viscosity, low toxicity, high thermal stability, and strong antifungal potential. In this study, the inhibitory performance of ionic liquid cations against Penicillium citrinum, Trichoderma viride, and Aspergillus niger was investigated, along with the mechanism of cell membrane disruption. The Oxford cup method, SEM, and TEM were employed to examine the extent of damage and the specific site of action of ionic liquids on the mycelium and cell structure of these fungi. The results showed that 1-decyl-3-methylimidazole had a strong inhibitory effect on TV; benzyldimethyldodecylammonium chloride had a weak inhibitory effect on PC, TV, AN, and a mixed culture; while dodecylpyridinium chloride exhibited significant inhibitory effects on PC, TV, AN, and Mix, with more prominent effects observed on AN and Mix, exhibiting MIC values of 5.37 mg/mL, 5.05 mg/mL, 5.10 mg/mL, and 5.23 mg/mL, respectively. The mycelium of the mildews showed drying, partial loss, distortion, and uneven thickness. The cell structure showed separation of the plasma wall. The absorbance of the extracellular fluid of PC and TV reached the maximum after 30 min, while that of AN reached the maximum after 60 min. The pH of the extracellular fluid decreased initially and then increased within 60 min, followed by a continuous decrease. These findings provide important insights for the application of ionic liquid antifungal agents in bamboo, medicine, and food.

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.5a098a2b477426b8324573a067e312f
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules28083432