Back to Search Start Over

Metallogenesis of Porphyry Copper Deposit Indicated by In Situ Zircon U-Pb-Hf-O and Apatite Sr Isotopes

Authors :
Hong Zhang
Fang An
Mingxing Ling
Xiaolin Feng
Weidong Sun
Source :
Minerals, Vol 12, Iss 11, p 1464 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The origin of the Dexing porphyry Cu deposit is hotly debated. Zircon and apatite are important accessory minerals that record key information of mineralization processes. SHRIMP zircon U-Pb analyses of granodiorite porphyries yield ages of 168.9 ± 1.2 Ma, 168.0 ± 1.0 Ma, and 172.8 ± 1.3 Ma, whereas zircons in the volcanic rocks of the Shuangqiaoshan Group have Neoproterozoic ages of 830 ± 7 Ma, 829 ± 8 Ma, and 899 ± 12 Ma. The porphyry displays zircon in situ δ18O of mantle values (5.5 ± 0.2‰), low apatite 87Sr/86Sr ratios (0.7058 ± 0.0005), and high εHf values (5.1 ± 1.5), which are consistent with mantle-derived magmatic rocks. Apatite from the porphyries has relatively high total rare earth elements (REEs) and negative Eu anomalies, with relatively high Cl and As contents. These features are distinctly different from apatite in the Shuangqiaoshan Group, which shows lower total REE, Cl, and As contents but higher F content and positive Eu anomalies. Zircon in porphyries yields a relative high oxygen fugacity of ∆FMQ + 1.5 based on zircon Ce4+/Ce3+. Apatite in porphyries also shows high oxygen fugacity based on its SO3 and Mn compositions, reaching ∆FMQ + 2, which is different from that of the lower continental crust in general, but similar to subduction-related magmas. In contrast, the oxygen fugacity of the Shuangqiaoshan Group is much lower, suggesting a different origin for its wall rock. Therefore, the Dexing porphyries were not derived from the lower crust but derived from partial melting of the subducting Paleo-Pacific plate.

Details

Language :
English
ISSN :
2075163X
Volume :
12
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Minerals
Publication Type :
Academic Journal
Accession number :
edsdoj.5a75d7b0604f4b7e975f52a2aaac4059
Document Type :
article
Full Text :
https://doi.org/10.3390/min12111464