Back to Search Start Over

Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition

Authors :
Liu Jingjing
Pucci Patrizia
Source :
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 349-381 (2023)
Publication Year :
2023
Publisher :
De Gruyter, 2023.

Abstract

The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in RN{{\mathbb{R}}}^{N}, which involves a double-phase general variable exponent elliptic operator A{\bf{A}}. More precisely, A{\bf{A}} has behaviors like ∣ξ∣q(x)−2ξ{| \xi | }^{q\left(x)-2}\xi if ∣ξ∣| \xi | is small and like ∣ξ∣p(x)−2ξ{| \xi | }^{p\left(x)-2}\xi if ∣ξ∣| \xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f(x,u)f\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.

Details

Language :
English
ISSN :
2191950X
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Advances in Nonlinear Analysis
Publication Type :
Academic Journal
Accession number :
edsdoj.5a7da67337ea41cdb44205134c714260
Document Type :
article
Full Text :
https://doi.org/10.1515/anona-2022-0292