Back to Search
Start Over
Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition
- Source :
- Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 349-381 (2023)
- Publication Year :
- 2023
- Publisher :
- De Gruyter, 2023.
-
Abstract
- The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in RN{{\mathbb{R}}}^{N}, which involves a double-phase general variable exponent elliptic operator A{\bf{A}}. More precisely, A{\bf{A}} has behaviors like ∣ξ∣q(x)−2ξ{| \xi | }^{q\left(x)-2}\xi if ∣ξ∣| \xi | is small and like ∣ξ∣p(x)−2ξ{| \xi | }^{p\left(x)-2}\xi if ∣ξ∣| \xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f(x,u)f\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.
Details
- Language :
- English
- ISSN :
- 2191950X
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Advances in Nonlinear Analysis
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5a7da67337ea41cdb44205134c714260
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/anona-2022-0292