Back to Search
Start Over
Local Scale-Guided Hierarchical Region Merging and Further Over- and Under-Segmentation Processing for Hybrid Remote Sensing Image Segmentation
- Source :
- IEEE Access, Vol 10, Pp 81492-81505 (2022)
- Publication Year :
- 2022
- Publisher :
- IEEE, 2022.
-
Abstract
- With the development of medium- and high-resolution satellites, successfully segmenting differently sized geo-objects remains a challenging issue for geographic object-based image analysis (GEOBIA). The hybrid image segmentation method is a good alternative to produce good segmentation that best matched the different sizes of geo-objects. However, the existing methods almost use segmentation parameters (SPs), such as scale, to control the sizes and shapes of segments. This will lead to two issues: (1) one single scale is impossible to segment every geo-object well due to the land cover complexity within remote-sensing imageries; (2) over- and under-segmented regions still occur in the segmentation results, whatever using any advanced segmentation methods. To solve the above problems, this paper developed a hybrid image segmentation method with local scale-guided hierarchical region merging and further over- and under-segmentation processing. First, the primitive segmentation was produced and then stratified into layers with different land covers. Then, the local scale was calculated for a more objective merging process in the separating layers. Third, the over- and under-segmentation at separating layers was recognized and re-processed for achieving a fine segmentation. To validate the proposed method, it was applied to three test images of gaofen-1 satellite with different land cover types, and ten competing methods were compared. The visual and quantitative results indicated the advantage of our method in segmenting out different sizes of geo-objects, which can effectively reduce the over- and under-segmentation error.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5aa4e3911f9c437bab8b7653ed30af6c
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2022.3194047