Back to Search Start Over

Transcriptomic Analysis of the Dehydration Rate of Mature Rice (Oryza sativa) Seeds

Authors :
Zhongqi Liu
Jinxin Gui
Yuntao Yan
Haiqing Zhang
Jiwai He
Source :
International Journal of Molecular Sciences, Vol 24, Iss 14, p 11527 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

In this study, a transcriptomic analysis of the dehydration rate of mature rice seeds was conducted to explore candidate genes related to the dehydration rate and provide a theoretical basis for breeding and utilization. We selected two rice cultivars for testing (Baghlani Nangarhar, an extremely rapid dehydration genotype, and Saturn, a slow dehydration genotype) based on the results determined by previous studies conducted on the screening of 165 germplasm materials for dehydration rate phenotypes. A rapid dehydration experiment performed on these two types of seeds was conducted. Four comparative groups were set up under control and dehydration conditions. The differentially expressed genes (DEGs) were quantified via transcriptome sequencing and real-time quantitative PCR (RT-qPCR). GO (Gene ontology) and KEGG(Kyoto Encyclopedia of Genes and Genomes) analyses were also conducted. In Baghlani Nangarhar, 53 DEGs were screened, of which 33 were up-regulated and 20 were down-regulated. In Saturn, 25 DEGs were screened, of which 19 were up-regulated and 6 were down-regulated. The results of the GO analysis show that the sites of action of the differentially expressed genes enriched in the rapid dehydration modes are concentrated in the cytoplasm, internal components of the membrane, and nucleosomes. They play regulatory roles in the processes of catalysis, binding, translocation, transcription, protein folding, degradation, and replication. They are also involved in adaptive responses to adverse external environments, such as reactive oxygen species and high temperature. The KEGG analysis showed that protein processing in the endoplasmic reticulum, amino acid biosynthesis, and oxidative phosphorylation were the main metabolic pathways that were enriched. The key differentially expressed genes and the most important metabolic pathways identified in the rapidly and slowly dehydrated genotypes were protein processing in the endoplasmic reticulum and oxidative phosphorylation metabolism. They were presumed to have important regulatory roles in the mechanisms of stress/defense, energy metabolism, protein synthesis/folding, and signal transduction during the dehydration and drying of mature seeds. The results of this study can potentially provide valuable information for further research on the genes and metabolic pathways related to the dehydration rate of mature rice seeds, and provide theoretical guidance for the selection and breeding of new rice germplasm that can be rapidly dehydrated at the mature stage.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
24
Issue :
14
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.5adc435db3784fbfa67428fbde8fb83b
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms241411527