Back to Search Start Over

Parkinson Hastalarının Tespitinde Karınca Koloni Algoritması ile Seçilen Özniteliklerin Performansa Etkisi

Authors :
Ali Narin
Source :
Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol 8, Iss 4, Pp 2443-2454 (2020)
Publication Year :
2020
Publisher :
Düzce University, 2020.

Abstract

Nerodejeneratif bir hastalık olan Parkinson, dopamin üreten hücrelerin zamanla azalması sonucunda ortaya çıkar. Bu azalma yaşa bağlı olarak değişir. Dünya nüfusunun yaşlandığı gerçeğine göre bakıldığında bu hastalığın ilerleyen yıllarda daha da artacağı söylenebilir. Parkinson hastalığının tanısı oldukça uzun süreli bir iştir. Kesin bir tanı mekanizması olamamakla birlikte çoğunlukla hasta uzun bir süre takibe alınır ve sonrasında Parkinson hastalığına tanı konulabilir. Bu çalışmada, nörologlara yardımcı bir tanı mekanizması önerilmiştir. Ses verileri yardımıyla Parkinson hastalığına sahip olanlar otomatik olarak tespit edilmiştir. Elde edilen özniteliklere min-max normalizasyon işlemi uygulanıp, karınca koloni algoritması (KKA) ile özniteliklerin seçilmesi işlemi ile tespit başarımlarının arttırılması amaçlanmıştır. Hem normalize edilmiş hem KKA ile seçilmiş özniteliklerin başarımı arttırdığı gösterilmiştir. Destek vektör makinalarının ikinci dereceden fonksiyonları ve KKA ile seçilen 30 adet öznitelik ile %87,5 doğruluk, %89,2 duyarlılık, %85,8 özgüllük ve %89,2 hassaslık ile en yüksek başarım değerleri elde edilmiştir.

Details

Language :
English, Turkish
ISSN :
21482446
Volume :
8
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Düzce Üniversitesi Bilim ve Teknoloji Dergisi
Publication Type :
Academic Journal
Accession number :
edsdoj.5adf8d994c476d989acd38e90aad65
Document Type :
article
Full Text :
https://doi.org/10.29130/dubited.650958