Back to Search
Start Over
Emergence of cryptic species and clades of Meyerozyma guilliermondii species complex exhibiting limited in vitro susceptibility to antifungals in patients with candidemia
- Source :
- Microbiology Spectrum, Vol 11, Iss 5 (2023)
- Publication Year :
- 2023
- Publisher :
- American Society for Microbiology, 2023.
-
Abstract
- ABSTRACT Members of the Meyerozyma guilliermondii species complex are able to cause superficial and life-threatening systemic infections with low susceptibility to azoles and echinocandins. We tested 130 bloodstream M. guilliermondii complex isolates collected from eight Latin American medical centers over 18 years (period 1 = 2000–2008 and period 2 = 2009–2018) to investigate trends in species distribution and antifungal resistance. The isolates were identified by rDNA ITS region sequencing, and antifungal susceptibility tests were performed against fluconazole, voriconazole, anidulafungin, and amphotericin B using the CLSI microbroth method. M. guilliermondii sensu stricto (s.s.; n = 116) was the most prevalent species, followed by Meyerozyma caribbica (n = 12) and Meyerozyma carpophila (n = 2). Based on rDNA ITS identification, three clades within M. guilliermondii sensu stricto were characterized (clade 1 n = 94; clade 2 n = 19; and clade 3 n = 3). In the second period of study, we found a substantial increment in the isolation of M. caribbica (3.4% versus 13.8%; P = 0.06) and clade 2 M. guilliermondii s.s. exhibiting lower susceptibility to one or more triazoles. IMPORTANCE Yeast-invasive infections play a relevant role in human health, and there is a concern with the emergence of non-Candida pathogens causing disease worldwide. There is a lack of studies addressing the prevalence and antifungal susceptibility of different species within the M. guilliermondii complex that cause invasive infections. We evaluated 130 episodes of M. guilliermondii species complex candidemia documented in eight medical centers over 18 years. We detected the emergence of less common species within the Meyerozyma complex causing candidemia and described a new clade of M. guilliermondii with limited susceptibility to triazoles. These results support the relevance of continued global surveillance efforts to early detect, characterize, and report emergent fungal pathogens exhibiting limited susceptibility to antifungals.
Details
- Language :
- English
- ISSN :
- 21650497
- Volume :
- 11
- Issue :
- 5
- Database :
- Directory of Open Access Journals
- Journal :
- Microbiology Spectrum
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5b77c09c9a3b43bbb2ef6d663a6facc2
- Document Type :
- article
- Full Text :
- https://doi.org/10.1128/spectrum.05115-22