Back to Search Start Over

Non-linear machine learning models incorporating SNPs and PRS improve polygenic prediction in diverse human populations

Authors :
Michael Elgart
Genevieve Lyons
Santiago Romero-Brufau
Nuzulul Kurniansyah
Jennifer A. Brody
Xiuqing Guo
Henry J. Lin
Laura Raffield
Yan Gao
Han Chen
Paul de Vries
Donald M. Lloyd-Jones
Leslie A. Lange
Gina M. Peloso
Myriam Fornage
Jerome I. Rotter
Stephen S. Rich
Alanna C. Morrison
Bruce M. Psaty
Daniel Levy
Susan Redline
the NHLBI’s Trans-Omics in Precision Medicine (TOPMed) Consortium
Tamar Sofer
Source :
Communications Biology, Vol 5, Iss 1, Pp 1-12 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Combining a standard polygenic risk score (PRS) as a feature in a machine learning model increases the percentage variance explained for those traits, helping to account for non-linearities or interaction effects in genetics-based prediction models.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
5
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.5b943dc87ee467e87670ec528cf6ef7
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-022-03812-z