Back to Search Start Over

Expression differences between proteins responsible for DNA damage repair according to the Gleason grade as a new heterogeneity marker in prostate cancer

Authors :
Damian Jaworski
Arkadiusz Gzil
Paulina Antosik
Izabela Zarębska
Joanna Dominiak
Izabela Neska-Długosz
Anna Kasperska
Dariusz Grzanka
Łukasz Szylberg
Source :
Archives of Medical Science, Vol 19, Iss 2, Pp 499-506 (2019)
Publication Year :
2019
Publisher :
Termedia Publishing House, 2019.

Abstract

Introduction The purpose of this research was to explore the correlation between Gleason score and pattern and the expression of the MLH1, MSH2, MDC1, TP53BP1 proteins in prostate cancer (PC). Prostate cancer development is related to errors in DNA, among others double-strand breaks (DSB) and changes in the base sequence of the DNA. These errors should be repaired through mismatch (MMR) or DSB repair proteins such as MSH2, MLH1, MDC1 and TP53BP1. Material and methods A total of 500 prostate cancer specimens were recruited in this study. From among all gathered specimens the 52 most suitable cases were selected. The expression of examined proteins was detected by immunohistochemistry, and its correlation with the Gleason score and pattern were further analyzed through standard statistical algorithms. Results The results show a significant correlation between Gleason pattern and the nuclear expression of the MSH2 protein and the cytoplasmic expression of the MLH1 protein. Gleason score significantly correlates with the nuclear and the cytoplasmic expression of the MSH2 protein and the cyto­plasmic expression of the MDC1 protein. There is no correlation between the nuclear or cytoplasmic expression of the TP53BP1 protein and Gleason pattern or score. Conclusions Our study suggests that the aberration in the MMR repair mechanism may be significantly more important regarding the grading among PC cells in comparison to the impact of alterations in the DSB repair mechanism. The lack of correlation between expression of the TP53BP1 protein and Gleason pattern and Gleason score suggests that the radiation resistance of PC is independent of alterations connected with TP53BP1.

Details

Language :
English
ISSN :
17341922 and 18969151
Volume :
19
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Archives of Medical Science
Publication Type :
Academic Journal
Accession number :
edsdoj.5b9dca86c6cc49158be3fa10230816b3
Document Type :
article
Full Text :
https://doi.org/10.5114/aoms.2019.89773