Back to Search Start Over

Performance Analysis and Optimization of a Vertical-Axis Wind Turbine with a High Tip-Speed Ratio

Authors :
Liang Li
Inderjit Chopra
Weidong Zhu
Meilin Yu
Source :
Energies, Vol 14, Iss 4, p 996 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

In this work, the aerodynamic performance and optimization of a vertical-axis wind turbine with a high tip-speed ratio are theoretically studied on the basis of the two-dimensional airfoil theory. By dividing the rotating plane of the airfoil into the upwind and downwind areas, the relationship among the angle of attack, azimuth, pitch angle, and tip-speed ratio is derived using the quasi-steady aerodynamic model, and aerodynamic loads on the airfoil are then obtained. By applying the polynomial approximation to functions of lift and drag coefficients with the angle of attack for symmetric and asymmetric airfoils, respectively, explicit expressions of aerodynamic loads as functions of the angle of attack are obtained. The performance of a fixed-pitch blade is studied by employing a NACA0012 model, and influences of the tip speed ratio, pitch angle, chord length, rotor radius, incoming wind speed and rotational speed on the performance of the blade are discussed. Furthermore, the optimization problem based on the dynamic-pitch method is investigated by considering the maximum value problem of the instantaneous torque as a function of the pitch angle. Dynamic-pitch laws for symmetric and asymmetric airfoils are derived.

Details

Language :
English
ISSN :
19961073
Volume :
14
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.5baa06d03c9541a78d13fe0084af2143
Document Type :
article
Full Text :
https://doi.org/10.3390/en14040996