Back to Search Start Over

Comprehensive Evaluation of Carbon-Fiber-Reinforced Polyetheretherketone (CFR-PEEK) Spinal Hardware for Proton and Photon Planning

Authors :
Chengyu Shi PhD
Haibo Lin PhD
Sheng Huang PhD
Weijun Xiong PhD
Lei Hu PhD
Isabelle Choi MD
Robert Press MD
Shaakir Hasan MD
Charles Simone MD
Arpit Chhabra MD
Source :
Technology in Cancer Research & Treatment, Vol 21 (2022)
Publication Year :
2022
Publisher :
SAGE Publishing, 2022.

Abstract

Purpose: To evaluate a novel spine implant, carbon-fiber-reinforced polyetheretherketone (CFR-PEEK), for proton and photon treatment planning. Materials and Methods: We compared target coverage and sparing of organs-at-risk (OARs) for a spinal phantom with 4 different spine configurations: (a) normal (no implant); (b) Titanium; (c) CFR-PEEK; and (d) hybrid (CFR-PEEK with Titanium tulip head). The spinal phantom was imaged via computed tomography (CT) scan, and the iterative Metal Artifact Reduction (iMAR) CT set was used for planning. A representative spinal chordoma target and associated OARs were contoured. The prescription dose was 50 Gy to the initial target volume, followed by a 24 Gy boost, for which multi-field optimization (MFO) proton plans were developed with a 3 mm setup and 3.5% range uncertainties. For photon planning, volumetric modulated arc therapy (VMAT) plans were developed for the initial and boost plans. OAR dose constraints were set according to our institutional guidelines. Results: For the 4 spine configurations, the proton plans achieved similar nominal target coverage and OARs sparing. While evaluating coverage and OAR dose under uncertainty scenario analysis for initial clinical target volume (CTV) 50 Gy 95% and 90% coverage, higher means and the narrower band of doses variations were achieved for the normal and CFR-PEEK plans. Similarly, uncertainty analysis of spinal cord D max showed tighter distribution for normal and CFR-PEEK plans. Overall plan quality showed no significant difference for photon planning when compared to normal spine versus other inserts. However, for proton planning, there is a larger difference for the normal spine insert scenario versus the Titanium insert scenario. For each insert scenario comparison between photon and proton plans, there was a larger difference for OARs: heart and spinal cord. Conclusion: The CFR-PEEK implant has similar clinical properties to a normal spine for proton planning, allowing us to pass protons through the material and achieve superior target coverage and OAR sparing under nominal and uncertainty conditions.

Details

Language :
English
ISSN :
15330338
Volume :
21
Database :
Directory of Open Access Journals
Journal :
Technology in Cancer Research & Treatment
Publication Type :
Academic Journal
Accession number :
edsdoj.5bace17fbee9428e8822b226f0f22e74
Document Type :
article
Full Text :
https://doi.org/10.1177/15330338221091700