Back to Search Start Over

Inactivation of Escherichia coli, Salmonella enterica, and Listeria monocytogenes using the Contamination Sanitization Inspection and Disinfection (CSI-D) device

Authors :
Jennifer McCoy Sanders
Vanessa Alarcon
Grace Marquis
Amanda Tabb
Jo Ann Van Kessel
Jakeitha Sonnier
Bradd J. Haley
Insuck Baek
Jianwei Qin
Moon Kim
Fartash Vasefi
Stanislav Sokolov
Rosalee S. Hellberg
Source :
Heliyon, Vol 10, Iss 9, Pp e30490- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

The Contamination Sanitization Inspection and Disinfection (CSI-D) device is a handheld fluorescence-based imaging system designed to disinfect food contact surfaces using ultraviolet-C (UVC) illumination. This study aimed to determine the optimal CSI-D parameters (i.e., UVC exposure time and intensity) for the inactivation of the following foodborne bacteria plated on non-selective media: generic Escherichia coli (indicator organism) and the pathogens enterohemorrhagic E. coli, enterotoxigenic E. coli, Salmonella enterica, and Listeria monocytogenes. Each bacterial strain was spread-plated on non-selective agar and exposed to high-intensity (10 mW/cm2) or low-intensity (5 mW/cm2) UVC for 1–5 s. Control plates were not exposed to UVC. The plates were incubated overnight at 37 °C and then enumerated. Three trials for each bacterial strain were conducted. Statistical analysis was carried out to determine if there were significant differences in bacterial growth between UVC intensities and exposure times. Overall, exposure to low or high intensity for 3–5 s resulted in consistent inhibition of bacterial growth, with reductions of 99.9–100 % for E. coli, 96.8–100 % for S. enterica, and 99.2–100 % for L. monocytogenes. The 1 s exposure time showed inconsistent results, with a 66.0–100 % reduction in growth depending on the intensity and bacterial strain. When the results for all strains within each species were combined, the 3–5 s exposure times showed significantly greater (p 0.05) in growth inhibition between the high and low UVC intensities. The results of this study show that, in pure culture conditions, exposure to UVC with the CSI-D device for ≥3 s is required to achieve consistent reduction of E. coli, S. enterica, and L. monocytogenes.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.5c1f15fef7f4309ae3d764665dba80b
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e30490