Back to Search
Start Over
Widely Targeted Metabolomics Analysis of the Roots, Stems, Leaves, Flowers, and Fruits of Camellia luteoflora, a Species with an Extremely Small Population
- Source :
- Molecules, Vol 29, Iss 19, p 4754 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Camellia luteoflora is a rare and endangered plant endemic to China. It has high ornamental and potential economic and medicinal value, and is an important germplasm resource of Camellia. To understand the distributions and differences in metabolites from different parts of C. luteoflora, in this study, we used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to examine the types and contents of chemical constituents in five organs of C. luteoflora: roots, stems, leaves, flowers, and fruits. The results showed that a total of 815 metabolites were identified in the five organs and were classified into 18 main categories, including terpenoids (17.1%), amino acids (10.4%), flavonoids (10.3%), sugars and alcohols (9.8%), organic acids (9.0%), lipids (7.1%), polyphenols (4.8%), alkaloids (4.8%), etc. A total of 684 differentially expressed metabolites (DEMs) in five organs were obtained and annotated into 217 KEGG metabolic pathways, among which metabolic pathways, ABC transporters, the biosynthesis of cofactors, and the biosynthesis of amino acids were significantly enriched. In DEMs, flowers are rich in flavonoids, polyphenols, organic acids, and steroids; fruits are rich in amino acids, alkaloids, vitamins, and xanthones; stems are rich in lignans; and leaves have the highest relative content of phenylpropanoids, ketoaldehydic acids, quinones, sugars and alcohols, terpenoids, coumarins, lipids, and others; meanwhile, the metabolite content is lower in roots. Among the dominant DEMs, 58 were in roots, including arachidonic acid, lucidone, isoliquiritigenin, etc.; 75 were in flowers, including mannose, shikimic acid, d-gluconic acid, kaempferol, etc.; 45 were in the fruit, including pterostilbene, l-ascorbic acid, riboflavin, etc.; 27 were in the stems, including salicylic acid, d-(-)-quinic acid, mannitol, (-)-catechin gallate, etc.; there was a maximum number of 119 dominant metabolites in the leaves, including oleanolic acid, l-glucose, d-arabitol, eugenol, etc. In sum, the rich chemical composition of C. luteoflora and the significant differences in the relative contents of metabolites in different organs will provide theoretical references for the study of tea, flower tea, edible oil, nutraceuticals, and the medicinal components of C. luteoflora.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 29
- Issue :
- 19
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5cc2574666ac43af8d9175bdd261de53
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules29194754