Back to Search
Start Over
Improving homology modeling from low-sequence identity templates in Rosetta: A case study in GPCRs.
- Source :
- PLoS Computational Biology, Vol 16, Iss 10, p e1007597 (2020)
- Publication Year :
- 2020
- Publisher :
- Public Library of Science (PLoS), 2020.
-
Abstract
- As sequencing methodologies continue to advance, the availability of protein sequences far outpaces the ability of structure determination. Homology modeling is used to bridge this gap but relies on high-identity templates for accurate model building. G-protein coupled receptors (GPCRs) represent a significant target class for pharmaceutical therapies in which homology modeling could fill the knowledge gap for structure-based drug design. To date, only about 17% of druggable GPCRs have had their structures characterized at atomic resolution. However, modeling of the remaining 83% is hindered by the low sequence identity between receptors. Here we test key inputs in the model building process using GPCRs as a focus to improve the pipeline in two critical ways: Firstly, we use a blended sequence- and structure-based alignment that accounts for structure conservation in loop regions. Secondly, by merging multiple template structures into one comparative model, the best possible template for every region of a target can be used expanding the conformational space sampled in a meaningful way. This optimization allows for accurate modeling of receptors using templates as low as 20% sequence identity, which accounts for nearly the entire druggable space of GPCRs. A model database of all non-odorant GPCRs is made available at www.rosettagpcr.org. Additionally, all protocols are made available with insights into modifications that may improve accuracy at new targets.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 1553734X and 15537358
- Volume :
- 16
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Computational Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5cdfd0369e4e494280075a69c537194c
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pcbi.1007597