Back to Search Start Over

Godunov-type scheme for air–water transient pipe flow considering variable heat transfer and laboratorial validation

Authors :
Ling Zhou
Qian-Xun Chen
Yun-Jie Li
Rui-Lin Feng
Zi-Jian Xue
Source :
Engineering Applications of Computational Fluid Mechanics, Vol 18, Iss 1 (2024)
Publication Year :
2024
Publisher :
Taylor & Francis Group, 2024.

Abstract

A robust comprehensive energy dissipation model is developed to investigate the rapid filling process of a T-shaped bifurcated pipeline with entrapped air pocket, while an experimental system is designed to validate the numerical model. In this work, a self-adapting heat transfer model is proposed to describe the energy exchange during transient event, fully considering the heat transfer of entrapped air pocket and hydraulic losses caused by steady friction and unsteady friction in the section of the filling water column. Importantly, the related heat transfer coefficient is variable and determined by mechanism formula of media characteristics, which is obviously different from the constant heat transfer coefficient in conventional model relying on the trial-and-error method and experimental data. Moreover, the second-order Godunov-type scheme is introduced to solve the governing equations of filling water column, while a virtual plug approach is proposed to track the air–water interface. The resulting predictions are compared to those obtained via a conventional empirical polytropic model and constant coefficient heat transfer model, and to experimental data. The proposed model accurately reproduces the experimental pressure oscillations. The results display that when an air pocket content exceeds a certain threshold (>1.7%), the comprehensive model using forced convection can reproduce the pressure fluctuations. When the air content is lower (

Details

Language :
English
ISSN :
19942060 and 1997003X
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Engineering Applications of Computational Fluid Mechanics
Publication Type :
Academic Journal
Accession number :
edsdoj.5d0d0e6d24d45b6845818ee2ef80b59
Document Type :
article
Full Text :
https://doi.org/10.1080/19942060.2024.2370931