Back to Search Start Over

Biologically informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post treatment glioblastoma

Authors :
Hairong Wang
Michael G. Argenziano
Hyunsoo Yoon
Deborah Boyett
Akshay Save
Petros Petridis
William Savage
Pamela Jackson
Andrea Hawkins-Daarud
Nhan Tran
Leland Hu
Kyle W. Singleton
Lisa Paulson
Osama Al Dalahmah
Jeffrey N. Bruce
Jack Grinband
Kristin R. Swanson
Peter Canoll
Jing Li
Source :
npj Digital Medicine, Vol 7, Iss 1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of recurrent glioblastoma. This study addresses the need for non-invasive approaches to map heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We developed BioNet, a biologically-informed neural network, to predict regional distributions of two primary tissue-specific gene modules: proliferating tumor (Pro) and reactive/inflammatory cells (Inf). BioNet significantly outperforms existing methods (p

Details

Language :
English
ISSN :
23986352
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Digital Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.5dad2992549480bb73b3faa28c1de97
Document Type :
article
Full Text :
https://doi.org/10.1038/s41746-024-01277-4