Back to Search
Start Over
Surface-specific thermal spin-depolarization on the half-metallic Heusler films
- Source :
- Communications Physics, Vol 8, Iss 1, Pp 1-7 (2025)
- Publication Year :
- 2025
- Publisher :
- Nature Portfolio, 2025.
-
Abstract
- Abstract Half-metallic ferromagnets exhibit a perfect spin-polarization at the Fermi energy. Among many candidates, Co2MnSi Heusler alloy is the most investigated material due to its half-metallic nature and high Curie temperature (T C). Magnetic junction devices using Co2MnSi show remarkable performance at low temperatures. However, the performance is significantly degraded at room temperature, which requires a detailed understanding of the temperature-dependent electronic structure of Co2MnSi films. Here, using surface-sensitive spin- and angle-resolved photoelectron spectroscopy combined with first-principles calculations, we verify the temperature- and momentum-dependent spin-polarization of Co2MnSi thin-film. The recorded spin-polarization reaches ~ 60-75% at 50 K, while it reduces ~ 30-50% at 300 K. The observed surface-specific spin-depolarization behavior can be described by the thermally excited magnon model even well below T C, and we conclude that the spin-fluctuation is markedly enhanced on its surface. Our findings provide insights into the temperature-dependent electronic structure of half-metallic Heusler films, which could have significant implications for future spintronic applications.
- Subjects :
- Astrophysics
QB460-466
Physics
QC1-999
Subjects
Details
- Language :
- English
- ISSN :
- 23993650
- Volume :
- 8
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5e126978b28a4285b72061e10c229c73
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42005-024-01918-w