Back to Search Start Over

In Planta Glycan Engineering and Functional Activities of IgE Antibodies

Authors :
Laura Montero-Morales
Daniel Maresch
Silvia Crescioli
Alexandra Castilho
Kristina M. Ilieva
Silvia Mele
Sophia N. Karagiannis
Friedrich Altmann
Herta Steinkellner
Source :
Frontiers in Bioengineering and Biotechnology, Vol 7 (2019)
Publication Year :
2019
Publisher :
Frontiers Media S.A., 2019.

Abstract

Human immunoglobulin E (IgE) is the most extensively glycosylated antibody isotype so glycans attached to the seven N-glycosites (NGS) in its Fab and Fc domains may modulate its functions. However, targeted modification of glycans in multiply glycosylated proteins remains a challenge. Here, we applied an in vivo approach that allows the manipulation of IgE N-glycans, using a trastuzumab equivalent IgE (HER2-IgE) as a model. Taking advantage of plant inherent features, i.e., synthesis of largely homogeneous complex N-glycans and susceptibility to glycan engineering, we generated targeted glycoforms of HER2-IgE largely resembling those found in serum IgE. Plant-derived HER2-IgE exhibited N-glycans terminating with GlcNAc, galactose or sialic acid, lacking, or carrying core fucose and xylose. We were able to not only modulate the five NGSs naturally decorated with complex N-glycans, but to also induce targeted glycosylation at the usually unoccupied NGS6, thus increasing the overall glycosylation content of HER2-IgE. Recombinant human cell-derived HER2-IgE exhibited large N-glycan heterogeneity. All HER2-IgE variants demonstrated glycosylation-independent binding to the target antigen and the high affinity receptor FcεRI, and subsequent similar capacity to trigger mast cell degranulation. In contrast, binding to the low affinity receptor CD23 (FcεRII) was modulated by the glycan profile, with increased binding to IgE variants with glycans terminating with GlcNAc residues. Here we offer an efficient in planta approach to generate defined glycoforms on multiply glycosylated IgE, allowing the precise exploration of glycosylation-dependent activities.

Details

Language :
English
ISSN :
22964185
Volume :
7
Database :
Directory of Open Access Journals
Journal :
Frontiers in Bioengineering and Biotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.5e2116d1d21c44209f0d73d72e844827
Document Type :
article
Full Text :
https://doi.org/10.3389/fbioe.2019.00242