Back to Search Start Over

Nucleotide‐Binding Oligomerization Domain‐Like Receptor Protein 3 Deficiency in Vascular Smooth Muscle Cells Prevents Arteriovenous Fistula Failure Despite Chronic Kidney Disease

Authors :
Xiangchao Ding
Jiuling Chen
Chuangyan Wu
Guohua Wang
Cheng Zhou
Shanshan Chen
Ke Wang
Anchen Zhang
Ping Ye
Jie Wu
Hao Zhang
Kaiying Xu
Sihua Wang
Jiahong Xia
Source :
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 8, Iss 1 (2019)
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

Background The arteriovenous fistula (AVF) is the preferred hemodialysis access for patients with chronic kidney disease. Chronic kidney disease can increase neointima formation, which greatly contributes to AVF failure by an unknown mechanism. Our study aimed to determine the role of nucleotide‐binding oligomerization domain‐like receptor protein 3 (NLRP3) in neointima formation induced by experimental AVFs in the presence of chronic kidney disease. Methods and Results From our findings, NLRP3 was upregulated in the intimal lesions of AVFs in both uremic mice and patients. Smooth muscle–specific knockout NLRP3 mice exhibited markedly decreased neointima formation in the outflow vein of AVFs. Compared with primary vascular smooth muscle cells isolated from control mice, those isolated from smooth muscle–specific knockout NLRP3 mice showed compromised proliferation, migration, phenotypic switching, and a weakened ability to activate mononuclear macrophages. To identify how NLRP3 functions, several small‐molecule inhibitors were used. The results showed that NLRP3 regulates smooth muscle cell proliferation and migration through Smad2/3 phosphorylation rather than through caspase‐1/interleukin‐1 signaling. Unexpectedly, the selective NLRP3‐inflammasome inhibitor MCC950 also repressed Smad2/3 phosphorylation and relieved chronic kidney disease–promoted AVF failure independent of macrophages. Conclusions Our findings suggest that NLRP3 in vascular smooth muscle cells may play a crucial role in uremia‐associated AVF failure and may be a promising therapeutic target for the treatment of AVF failure.

Details

Language :
English
ISSN :
20479980
Volume :
8
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.5e2dad813c884ec5bab32158266e8630
Document Type :
article
Full Text :
https://doi.org/10.1161/JAHA.118.011211