Back to Search
Start Over
Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress
- Source :
- Redox Biology, Vol 28, Iss , Pp - (2020)
- Publication Year :
- 2020
- Publisher :
- Elsevier, 2020.
-
Abstract
- A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells. From this screen we discovered a 1,4-Naphthoquinone (referred to as BH10) that is toxic to a broad range of cancer cell types. BH10 has improved cancer-selective toxicity compared to doxorubicin, 17-AAG, vitamin K3, and other known anti-cancer quinones. BH10 increases glucose oxidation via both mitochondrial and pentose phosphate pathways, decreases glycolysis, lowers GSH:GSSG and NAPDH/NAPD+ ratios exclusively in cancer cells, and induces necrosis. BH10 targets mitochondrial redox defence as evidenced by increased mitochondrial peroxiredoxin 3 oxidation and decreased mitochondrial aconitase activity, without changes in markers of cytosolic or nuclear damage. Over-expression of mitochondria-targeted catalase protects cells from BH10-mediated toxicity, while the thioredoxin reductase inhibitor auranofin synergistically enhances BH10-induced peroxiredoxin 3 oxidation and cytotoxicity. Overall, BH10 represents a 1,4-Naphthoquinone with an improved cancer-selective cytotoxicity profile via its mitochondrial specificity. Keywords: Cancer metabolism, Quinone, Peroxiredoxin, Mitochondria
- Subjects :
- Medicine (General)
R5-920
Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 22132317
- Volume :
- 28
- Issue :
- -
- Database :
- Directory of Open Access Journals
- Journal :
- Redox Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5e4c5baf666144d5a43fe60f14c4e6fb
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.redox.2019.101374