Back to Search Start Over

Ammidin ameliorates myocardial hypoxia/reoxygenation injury by inhibiting the ACSL4/AMPK/mTOR-mediated ferroptosis pathway

Authors :
Yue Han
Hui Yuan
Fengxiang Li
Yueying Yuan
Xuezhi Zheng
Xudong Zhang
Jian Sun
Source :
BMC Complementary Medicine and Therapies, Vol 23, Iss 1, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Objective The aim of the present study was to investigate the therapeutic effect of ammidin on hypoxia/reoxygenation (H/R) injury in primary neonatal rat cardiomyocytes by observing the role of ferroptosis in the process of H/R injury, and to verify its target and regulatory signaling pathways. Methods The network pharmacology analysis was used to predict the biological processes, core targets and related signaling pathways of Angelica dahurica in the treatment of ferroptosis. Cell viability was assessed using live cell imaging and cell counting kit-8. Lactate dehydrogenase (LDH), reactive oxygen species (ROS) production, and malondialdehyde (MDA), superoxide dismutase (SOD) and mitochondrial membrane potential (MMP) content were determined to assess the level of ferroptosis. Western blotting was performed to measure protein expression. Results Network pharmacology predicted that Acyl-CoA synthetase long chain family member 4 (ACSL4) was highly associated with myocardial H/R injury in the intersection of Angelica dahurica and ferroptosis. The top three active components of Angelica dahurica were found to be mandenol, alloisoimperatorin and ammidin, among which ammidin was found to have the strongest binding to the target proteins of the ACSL4/AMPK/mTOR pathway. H/R reduced the viability of cardiomyocytes, while the inhibition of ferroptosis by ferrostatin-1 alleviated the H/R-induced inhibition of cardiomyocyte viability. This was evidenced by the increased cell viability, SOD release, MMP level and glutathione peroxidase 4 (GPX4) protein expression, as well as the decreased LDH and MDA release and ROS production and ACSL4 protein expression (P

Details

Language :
English
ISSN :
26627671
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Complementary Medicine and Therapies
Publication Type :
Academic Journal
Accession number :
edsdoj.5eb060af8b7147f2878449f82ec948ac
Document Type :
article
Full Text :
https://doi.org/10.1186/s12906-023-04289-x