Back to Search Start Over

Copper hydrogen phosphate nanosheets functionalized hydrogel with tissue adhesive, antibacterial, and angiogenic capabilities for tracheal mucosal regeneration

Authors :
Pengli Wang
Erji Gao
Tao Wang
Yanping Feng
Yong Xu
Lefeng Su
Wei Gao
Zheng Ci
Muhammad Rizwan Younis
Jiang Chang
Chen Yang
Liang Duan
Source :
Journal of Nanobiotechnology, Vol 22, Iss 1, Pp 1-18 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Timely and effective interventions after tracheal mucosal injury are lack in clinical practices, which elevate the risks of airway infection, tracheal cartilage deterioration, and even asphyxiated death. Herein, we proposed a biomaterial-based strategy for the repair of injured tracheal mucosal based on a copper hydrogen phosphate nanosheets (CuHP NSs) functionalized commercial hydrogel (polyethylene glycol disuccinimidyl succinate-human serum albumin, PH). Such CuHP/PH hydrogel achieved favorable injectability, stable gelation, and excellent adhesiveness within the tracheal lumen. Moreover, CuHP NSs within the CuHP/PH hydrogel effectively stimulate the proliferation and migration of endothelial/epithelial cells, enhancing angiogenesis and demonstrating excellent tissue regenerative potential. Additionally, it exhibited significant inhibitory effects on both bacteria and bacterial biofilms. More importantly, when injected injured site of tracheal mucosa under fiberoptic bronchoscopy guidance, our results demonstrated CuHP/PH hydrogel adhered tightly to the tracheal mucosa. The therapeutic effects of the CuHP/PH hydrogel were further confirmed, which significantly improved survival rates, vascular and mucosal regeneration, reduced occurrences of intraluminal infections, tracheal stenosis, and cartilage damage complications. This research presents an initial proposition outlining a strategy employing biomaterials to mitigate tracheal mucosal injury, offering novel perspectives on the treatment of mucosal injuries and other tracheal diseases.

Details

Language :
English
ISSN :
14773155
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.5eb4c254a3a04e04a109882fa76692af
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-024-02920-8