Back to Search Start Over

Recent Advances in Smart Epidural Spinal Needles

Authors :
Murad Althobaiti
Sajid Ali
Nasir G. Hariri
Kamran Hameed
Yara Alagl
Najwa Alzahrani
Sara Alzahrani
Ibraheem Al-Naib
Source :
Sensors, Vol 23, Iss 13, p 6065 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Lumbar puncture is a minimally invasive procedure that utilizes a spinal needle to puncture the lumbar epidural space to take a sample from the cerebrospinal fluid or inject drugs for diagnostic and therapeutic purposes. Physicians rely on their expertise to localize epidural space. Due to its critical procedure, the failure rate can reach up to 28%. Hence, a high level of experience and caution is required to correctly insert the needle without puncturing the dura mater, which is a fibrous layer protecting the spinal cord. Failure of spinal anesthesia is, in some cases, related to faulty needle placement techniques since it is blindly inserted. Therefore, advanced techniques for localization of the epidural space are essential to avoid any possible side effects. As for epidural space localization, various ideas were carried out over recent years to provide accurate identification of the epidural space. Subsequently, several methodologies based on mechanical and optical schemes have been proposed. Several research groups worked from different aspects of the problem, namely, the clinical and engineering sides. Hence, the main goal of this paper is to review this research with the aim of remedying the gap between the clinical side of the problem and the engineering side by examining the main techniques in building sensors for such purposes. This manuscript provides an understanding of the clinical needs of spinal needles from an anatomical point of view. Most importantly, it discusses the mechanical and optical approaches in designing and building sensors to guide spinal needles. Finally, the standards that must be followed in building smart spinal needles for approval procedures are also presented, along with some insight into future directions.

Details

Language :
English
ISSN :
23136065 and 14248220
Volume :
23
Issue :
13
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.5f1ac9a3e1da47b39ef8ba7da750dda7
Document Type :
article
Full Text :
https://doi.org/10.3390/s23136065