Back to Search Start Over

Ensemble Extreme Learning Machine Method for Hemoglobin Estimation Based on PhotoPlethysmoGraphic Signals

Authors :
Fulai Peng
Ningling Zhang
Cai Chen
Fengxia Wu
Weidong Wang
Source :
Sensors, Vol 24, Iss 6, p 1736 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Non-invasive detection of hemoglobin (Hb) concentration is of great clinical value for health screening and intraoperative blood transfusion. However, the accuracy and stability of non-invasive detection still need to be improved to meet clinical requirement. This paper proposes a non-invasive Hb detection method using ensemble extreme learning machine (EELM) regression based on eight-wavelength PhotoPlethysmoGraphic (PPG) signals. Firstly, a mathematical model for non-invasive Hb detection based on the Beer-Lambert law is established. Secondly, the captured eight-channel PPG signals are denoised and fifty-six feature values are extracted according to the derived mathematical model. Thirdly, a recursive feature elimination (RFE) algorithm is used to select the features that contribute most to the Hb prediction. Finally, a regression model is built by integrating several independent ELM models to improve prediction stability and accuracy. Experiments conducted on 249 clinical data points (199 cases as the training dataset and 50 cases as the test dataset) evaluate the proposed method, achieving a root mean square error (RMSE) of 1.72 g/dL and a Pearson correlation coefficient (PCC) of 0.76 (p < 0.01) between predicted and reference values. The results demonstrate that the proposed non-invasive Hb detection method exhibits a strong correlation with traditional invasive methods, suggesting its potential for non-invasive detection of Hb concentration.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.5f28f759994fb0ab171f5f46dc0612
Document Type :
article
Full Text :
https://doi.org/10.3390/s24061736