Back to Search Start Over

αvβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide against malignant melanoma

Authors :
Yongwei Gu
Yue Du
Liangdi Jiang
Xiaomeng Tang
Aixue Li
Yunan Zhao
Yitian Lang
Xiaoyan Liu
Jiyong Liu
Source :
Journal of Nanobiotechnology, Vol 20, Iss 1, Pp 1-20 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background Melanoma is the most malignant skin tumor and is difficult to cure with the alternative treatments of chemotherapy, biotherapy, and immunotherapy. Our previous study showed that triptolide (TP) exhibited powerful tumoricidal activity against melanoma. However, the clinical potential of TP is plagued by its poor aqueous solubility, short half-life, and biotoxicity. Therefore, developing an ideal vehicle to efficiently load TP and achieving targeted delivery to melanoma is a prospective approach for making full use of its antitumor efficacy. Results We applied exosome (Exo) derived from human umbilical cord mesenchymal stromal cells (hUCMSCs) and engineered them exogenously with a cyclic peptide, arginine-glycine-aspartate (cRGD), to encapsulate TP to establish a bionic-targeted drug delivery system (cRGD-Exo/TP), achieving synergism and toxicity reduction. The average size of cRGD-Exo/TP was 157.34 ± 6.21 nm, with a high drug loading of 10.76 ± 1.21%. The in vitro antitumor results showed that the designed Exo delivery platform could be effectively taken up by targeted cells and performed significantly in antiproliferation, anti-invasion, and proapoptotic activities in A375 cells via the caspase cascade and mitochondrial pathways and cell cycle alteration. Furthermore, the biodistribution and pharmacokinetics results demonstrated that cRGD-Exo/TP possessed superior tumor targetability and prolonged the half-life of TP. Notably, cRGD-Exo/TP significantly inhibited tumor growth and extended survival time with negligible systemic toxicity in tumor-bearing mice. Conclusion The results indicated that the functionalized Exo platform provides a promising strategy for targeted therapy of malignant melanoma. Graphical Abstract

Details

Language :
English
ISSN :
14773155
Volume :
20
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.5f332a89044aec86beac0dada6f370
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-022-01597-1