Back to Search
Start Over
Facile Synthesis and Electrochemical Studies of Mn2O3/Graphene Composite as an Electrode Material for Supercapacitor Application
- Source :
- Frontiers in Chemistry, Vol 9 (2021)
- Publication Year :
- 2021
- Publisher :
- Frontiers Media S.A., 2021.
-
Abstract
- A simplified sol-gel method that can be scaled up for large-scale production was adopted for the preparation of manganese oxide nanocrystals. Prepared Mn2O3 exhibited micron-sized particles with a nanoporous structure. In the present study, a simple and low-cost strategy has been employed to fabricate nanoporous Mn2O3 with an increased surface area for an electrode/electrolyte interface that improved the conduction of Mn2O3 material. The crystal phase and morphology of the prepared material was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The prepared electrode materials were deposited on a nickel foam substrate to investigate the electrochemical properties. The galvanostatic charge/discharge (GCD), cyclic voltammetry (CV), and complex impedance studies confirmed excellent specific capacitance and capacitive behavior of the prepared material. The synthesized Mn2O3/graphene composites exhibited an excellent specific capacitance of 391 F/g at a scan rate of 5 mV/S. Moreover, a specific capacitance of 369 F/g was recorded at a current density of 0.5 A/g using the galvanostatic charge/discharge test. The high porosity of the materials provided a better electrolyte-electrode interface with a larger specific area, thus suggesting its suitability for energy storage applications.
- Subjects :
- sol-gel method
graphene
Mn2O3
nickel foam
cyclic voltammetry
Chemistry
QD1-999
Subjects
Details
- Language :
- English
- ISSN :
- 22962646
- Volume :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5f3f7cab70df4c1f91db65b7c9938bba
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fchem.2021.717074