Back to Search Start Over

Effect of Feature Selection on the Prediction of Direct Normal Irradiance

Authors :
Mohamed Khalifa Boutahir
Yousef Farhaoui
Mourade Azrour
Imad Zeroual
Ahmad El Allaoui
Source :
Big Data Mining and Analytics, Vol 5, Iss 4, Pp 309-317 (2022)
Publication Year :
2022
Publisher :
Tsinghua University Press, 2022.

Abstract

Solar radiation is capable of producing heat, causing chemical reactions, or generating electricity. Thus, the amount of solar radiation at different times of the day must be determined to design and equip all solar systems. Moreover, it is necessary to have a thorough understanding of different solar radiation components, such as Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI). Unfortunately, measurements of solar radiation are not easily accessible for the majority of regions on the globe. This paper aims to develop a set of deep learning models through feature importance algorithms to predict the DNI data. The proposed models are based on historical data of meteorological parameters and solar radiation properties in a specific location of the region of Errachidia, Morocco, from January 1, 2017, to December 31, 2019, with an interval of 60 minutes. The findings demonstrated that feature selection approaches play a crucial role in forecasting of solar radiation accurately when compared with the available data.

Details

Language :
English
ISSN :
20960654
Volume :
5
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Big Data Mining and Analytics
Publication Type :
Academic Journal
Accession number :
edsdoj.5f56bdb2185b417c88e0e75af65ea737
Document Type :
article
Full Text :
https://doi.org/10.26599/BDMA.2022.9020003