Back to Search Start Over

Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions

Authors :
Iftikhar Ahmad
Adil Sana
Manabu Kano
Izzat Iqbal Cheema
Brenno C. Menezes
Junaid Shahzad
Zahid Ullah
Muzammil Khan
Asad Habib
Source :
Energies, Vol 14, Iss 16, p 5072 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Machine Learning (ML) is one of the major driving forces behind the fourth industrial revolution. This study reviews the ML applications in the life cycle stages of biofuels, i.e., soil, feedstock, production, consumption, and emissions. ML applications in the soil stage were mostly used for satellite images of land to estimate the yield of biofuels or a suitability analysis of agricultural land. The existing literature have reported on the assessment of rheological properties of the feedstocks and their effect on the quality of biofuels. The ML applications in the production stage include estimation and optimization of quality, quantity, and process conditions. The fuel consumption and emissions stage include analysis of engine performance and estimation of emissions temperature and composition. This study identifies the following trends: the most dominant ML method, the stage of life cycle getting the most usage of ML, the type of data used for the development of the ML-based models, and the frequently used input and output variables for each stage. The findings of this article would be beneficial for academia and industry-related professionals involved in model development in different stages of biofuel’s life cycle.

Details

Language :
English
ISSN :
19961073
Volume :
14
Issue :
16
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.5f98a4289383403ba53921b6bd0acd6b
Document Type :
article
Full Text :
https://doi.org/10.3390/en14165072