Back to Search Start Over

Association of Short-Term Exposure to PM2.5 with Blood Lipids and the Modification Effects of Insulin Resistance: A Panel Study in Wuhan

Authors :
Jinhui Sun
Shouxin Peng
Zhaoyuan Li
Feifei Liu
Chuangxin Wu
Yuanan Lu
Hao Xiang
Source :
Toxics, Vol 10, Iss 11, p 663 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Results of previous studies about the acute effects of fine particulate matter (PM2.5) on blood lipids were inconsistent. This study aimed to quantify the short-term effects of PM2.5 on blood lipids and estimate the modifying role of insulin resistance, reflected by the homeostasis model assessment of insulin resistance (HOMA-IR). From September 2019 to January 2020, the study recruited 70 healthy adults from Wuhan University for a total of eight repeated data collections. At each visit, three consecutive days were monitored for personal exposure to PM2.5, and then a physical examination was carried out on the fourth day. The linear mixed-effect models were operated to investigate the impact of PM2.5 over diverse exposure windows on blood lipids. With the median of the HOMA-IR 1.820 as the cut-off point, participants were assigned to two groups for the interaction analyses. We found the overall mean level (standard deviation, SD) of PM2.5 was 38.34 (18.33) μg/m3. Additionally, with a 10 μg/m3 rise in PM2.5, the corresponding largest responses in triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), as well as high-density lipoprotein cholesterol (HDL-C), were −0.91% (95% confidence interval (CI): −1.63%, −0.18%), −0.33% (95% CI: −0.64%, −0.01%,), −0.94% (95% CI: −1.53%, −0.35%), and 0.67% (95% CI: 0.32%, 1.02%), respectively. The interaction analyses revealed that a significantly greater reduction in the four lipids corresponded to PM2.5 exposure when in the group with the lower HOMA-IR (2.5 exposure over specific time windows among healthy adults was associated with reduced TG, TC, as well as LDL-C levels, and elevated HDL-C. Additionally, the association of PM2.5–lipids may be modulated by insulin resistance.

Details

Language :
English
ISSN :
23056304
Volume :
10
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Toxics
Publication Type :
Academic Journal
Accession number :
edsdoj.5fb0817e8fcb4af98fdb8a66704b3755
Document Type :
article
Full Text :
https://doi.org/10.3390/toxics10110663