Back to Search
Start Over
Chemical characterization of submicron regional background aerosols in the western Mediterranean using an Aerosol Chemical Speciation Monitor
- Source :
- Atmospheric Chemistry and Physics, Vol 15, Iss 11, Pp 6379-6391 (2015)
- Publication Year :
- 2015
- Publisher :
- Copernicus Publications, 2015.
-
Abstract
- An Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research Inc.) was deployed at the Montseny (MSY; 41° 46'46" N, 02° 21'29" E, 720 m a.s.l.) regional background site in the western Mediterranean, Spain, from June 2012 to July 2013 to measure real-time inorganic (nitrate, sulfate, ammonium and chloride) and organic submicron aerosol concentrations. Co-located measurements, including real-time submicron particulate matter (PM1) and black carbon (BC) concentrations, and off-line PM1 chemical analysis were also carried out. This is one of the few studies that compare ACSM data with off-line PM1 measurements, avoiding the tail of the coarse mode included in the PM2.5 fraction. The ACSM + BC concentrations agreed with the PM1 measurements, and a strong correlation was found between the concentrations of ACSM species and the off-line measurements, although some discrepancies remain unexplained. Results point to a current underestimation of the relative ionization efficiency (RIE) established for organic aerosol (OA), which should be revised in the future. The OA was the major component of submicron aerosol (53% of PM1), with a higher contribution in summer (58% of PM1) than in winter (45% of PM1). Source apportionment of OA was carried out by applying positive matrix factorization (PMF), using the multilinear engine (ME-2) to the organic mass spectral data matrix. Three sources were identified in summer: hydrocarbon-like OA (HOA), low-volatile oxygenated OA (LV-OOA), and semi-volatile oxygenated OA (SV-OOA). The secondary OA (SOA; 4.8 μg m−3, sum of LV-OOA and SV-OOA) accounted for 85% of the total OA, and its formation during daytime (mainly SV-OOA) was estimated to be 1.1 μg m−3. In winter, HOA was also identified (12% of OA), a contribution from biomass burning OA (BBOA) was included and it was not possible to differentiate between two different SOA factors, but a single oxygenated OA (OOA) factor was resolved. The OOA contribution represented 60% of the total OA, with a degree of oxidation higher than both OOA summer factors. An intense wildfire episode was studied, obtaining a region-specific BBOA profile.
Details
- Language :
- English
- ISSN :
- 16807316 and 16807324
- Volume :
- 15
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Atmospheric Chemistry and Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.60476857a3c44e87bf9119d0abaffc30
- Document Type :
- article
- Full Text :
- https://doi.org/10.5194/acp-15-6379-2015