Back to Search Start Over

Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model.

Authors :
Michael B J Harfoot
Tim Newbold
Derek P Tittensor
Stephen Emmott
Jon Hutton
Vassily Lyutsarev
Matthew J Smith
Jörn P W Scharlemann
Drew W Purves
Source :
PLoS Biology, Vol 12, Iss 4, p e1001841 (2014)
Publication Year :
2014
Publisher :
Public Library of Science (PLoS), 2014.

Abstract

Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
15449173 and 15457885
Volume :
12
Issue :
4
Database :
Directory of Open Access Journals
Journal :
PLoS Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.608d47db94ab448584673a977f9d6255
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pbio.1001841