Back to Search Start Over

Urinary metals and their associations with DNA oxidative damage among e-waste recycling workers in Hong Kong

Authors :
Gengze Liao
Xueqiong Weng
Feng Wang
Yanny Hoi Kuen Yu
Victoria H. Arrandale
Alan Hoi-shou Chan
Shaoyou Lu
Lap Ah Tse
Source :
Ecotoxicology and Environmental Safety, Vol 284, Iss , Pp 116872- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Recycling electronic waste (e-waste) poses risks of metal exposure, potentially leading to health impairments. However, no previous study has focused on this issue in Hong Kong. Therefore, from June 2021 to September 2022, this study collected urine samples from 101 e-waste workers and 100 office workers in Hong Kong to compare their urinary levels of metals using ICP-MS. Among the 15 included metals (with detection rates above the 70 % threshold), eight showed significantly higher urinary concentrations (unit: μg/g creatinine) in e-waste workers compared to office workers: Li (25.09 vs. 33.36), Mn (1.78 vs. 4.15), Ni (2.10 vs. 2.77), Cu (5.81 vs. 9.23), Zn (404.35 vs. 431.52), Sr (151.33 vs. 186.26), Tl (0.35 vs. 0.43), and Pb (0.69 vs. 1.16). E-waste workers in Hong Kong generally exhibited lower metal levels than those in developing regions but higher than their counterparts in developed areas. The urine level of 8-hydroxy-2-deoxyguanosine (8-OHdG) was determined by HPLC-MS/MS, and no significant difference was found between the two groups. Multiple linear regression models revealed no significant association between individual metal and urinary 8-OHdG concentrations. However, the metal mixture was identified to marginally elevate the 8-OHdG concentrations (1.12, 95 %CI: 0.04, 2.19) by quantile g‑computation models, with Mn and Cd playing significant roles in such effect. In conclusion, while the metal levels among Hong Kong e-waste workers compared favorably with their counterparts in other regions, their levels were higher than those of local office workers. This underscores the need for policymakers to prioritize attention to this unique industry.

Details

Language :
English
ISSN :
01476513
Volume :
284
Issue :
116872-
Database :
Directory of Open Access Journals
Journal :
Ecotoxicology and Environmental Safety
Publication Type :
Academic Journal
Accession number :
edsdoj.60a6ae07da4ced94bca5b3272ec913
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ecoenv.2024.116872