Back to Search Start Over

Allicin Alleviates Diabetes Mellitus by Inhibiting the Formation of Advanced Glycation End Products

Authors :
Linzehao Li
Qinghe Song
Xiandang Zhang
Yan Yan
Xiaolei Wang
Source :
Molecules, Vol 27, Iss 24, p 8793 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Advanced glycation end products (AGEs) cause damage to pancreatic β-cells and trigger oxidative stress and inflammation, which promotes the development and progression of diabetes and its complications. Therefore, it is important to inhibit the formation of AGEs as part of the treatment of diabetes. Allicin is a natural antimicrobial agent with abundant pharmacological activities, and recent studies have reported its therapeutic effects in diabetes; however, the mechanism of these therapeutic effects is still unclear. Thus, the purpose of this study was to further investigate the association between allicin treatment of diabetes and AGEs. First, we established a streptozocin (STZ)-induced diabetic rat model and treated the rats with allicin for six weeks. We measured glycolipid metabolism, AGE levels, receptor of advanced glycation end products (RAGE) levels, oxidative stress, and other related indicators. The results showed that allicin improved blood glucose and body weight, reduced lipid accumulation, and inhibited AGE formation in rats. Treatment with allicin also inhibited RAGEs and thereby prevented AGE activity, which, in turn, alleviated oxidative stress and promoted insulin secretion. To further verify the effect of allicin on AGEs, we also performed in vitro nonenzymatic glycation simulation experiments. These results showed that allicin inhibited the production of AGEs by suppressing the production of AGEs intermediates. Thus, our research suggests that allicin may alleviate diabetes by inhibiting the formation of AGEs and reducing RAGE levels to relieve oxidative stress and promote insulin secretion.

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
24
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.60b715b94d4141d38c942dc8f3ce8814
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules27248793