Back to Search Start Over

A Graph Convolutional Network Based on Sentiment Support for Aspect-Level Sentiment Analysis

Authors :
Ruiding Gao
Lei Jiang
Ziwei Zou
Yuan Li
Yurong Hu
Source :
Applied Sciences, Vol 14, Iss 7, p 2738 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Aspect-level sentiment analysis is a research focal point for natural language comprehension. An attention mechanism is a very important approach for aspect-level sentiment analysis, but it only fuses sentences from a semantic perspective and ignores grammatical information in the sentences. Graph convolutional networks (GCNs) are a better method for processing syntactic information; however, they still face problems in effectively combining semantic and syntactic information. This paper presents a sentiment-supported graph convolutional network (SSGCN). This SSGCN first obtains the semantic information of the text through aspect-aware attention and self-attention; then, a grammar mask matrix and a GCN are applied to preliminarily combine semantic information with grammatical information. Afterward, the processing of these information features is divided into three steps. To begin with, features related to the semantics and grammatical features of aspect words are extracted. The second step obtains the enhanced features of the semantic and grammatical information through sentiment support words. Finally, it concatenates the two features, thus enhancing the effectiveness of the attention mechanism formed from the combination of semantic and grammatical information. The experimental results show that compared with benchmark models, the SSGCN had an improved accuracy of 6.33–0.5%. In macro F1 evaluation, its improvement range was 11.68–0.5%.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.610d57b3f02047b08dc27203396e96bc
Document Type :
article
Full Text :
https://doi.org/10.3390/app14072738